In this paper we introduce a Cheeger-type constant defined as a minimization of a suitable functional among all the N-clusters contained in an open bounded set Ω. Here with N-Cluster we mean a family of N sets of finite perimeter, disjoint up to a set of null Lebesgue measure. We call any N-cluster attaining such a minimum a Cheeger N-cluster. Our purpose is to provide a non trivial lower bound on the optimal partition problem for the first Dirichlet eigenvalue of the Laplacian. Here we discuss the regularity of Cheeger N-clusters in a general ambient space dimension and we give a precise description of their structure in the planar case. The last part is devoted to the relation between the functional introduced here (namely the N-Cheeger constant), the partition problem for the first Dirichlet eigenvalue of the Laplacian and the Caffarelli and Lin’s conjecture.

Cheeger N-clusters

Caroccia M.
2017-01-01

Abstract

In this paper we introduce a Cheeger-type constant defined as a minimization of a suitable functional among all the N-clusters contained in an open bounded set Ω. Here with N-Cluster we mean a family of N sets of finite perimeter, disjoint up to a set of null Lebesgue measure. We call any N-cluster attaining such a minimum a Cheeger N-cluster. Our purpose is to provide a non trivial lower bound on the optimal partition problem for the first Dirichlet eigenvalue of the Laplacian. Here we discuss the regularity of Cheeger N-clusters in a general ambient space dimension and we give a precise description of their structure in the planar case. The last part is devoted to the relation between the functional introduced here (namely the N-Cheeger constant), the partition problem for the first Dirichlet eigenvalue of the Laplacian and the Caffarelli and Lin’s conjecture.
2017
49Q15
File in questo prodotto:
File Dimensione Formato  
Cheeger N-clusters.pdf

Accesso riservato

: Publisher’s version
Dimensione 959.41 kB
Formato Adobe PDF
959.41 kB Adobe PDF   Visualizza/Apri
11311-1174053_Carooccia.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 594.21 kB
Formato Adobe PDF
594.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1174053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact