In this paper, the results of an experimental campaign of cryogenic milling are presented and discussed. For this purpose, a specific experimental setup that allowed to feed the liquid nitrogen LN through the tool nozzles was used. Tool life tests were carried out at different cutting speeds. The tool duration data were collected and used to identify the parameters of the Taylor’s model. Different end-of-life criteria for the tool inserts were even investigated. The achieved results are compared to those obtained using conventional cooling. It was observed that at low cutting velocity, conventional cooling still assures longer tool lives than in cryogenic condition. Since in cryogenic milling the increasing of the cutting velocity is not so detrimental as in conventional cutting, at high cutting speed (from 125 m/min) longer tool durations can be achieved. Statistical analyses on the model parameters were carried out to confirm the presented findings. The analysis of the effect of the cooling approach on the main wear mechanisms was also reported. At low cutting speed, adhesion and chipping phenomena affected the tool duration mainly in cryogenic milling.

Experimental investigation of the effects of cryogenic cooling on tool life in Ti6Al4V milling

Albertelli P.;Mussi V.;Strano M.;Monno M.
2021

Abstract

In this paper, the results of an experimental campaign of cryogenic milling are presented and discussed. For this purpose, a specific experimental setup that allowed to feed the liquid nitrogen LN through the tool nozzles was used. Tool life tests were carried out at different cutting speeds. The tool duration data were collected and used to identify the parameters of the Taylor’s model. Different end-of-life criteria for the tool inserts were even investigated. The achieved results are compared to those obtained using conventional cooling. It was observed that at low cutting velocity, conventional cooling still assures longer tool lives than in cryogenic condition. Since in cryogenic milling the increasing of the cutting velocity is not so detrimental as in conventional cutting, at high cutting speed (from 125 m/min) longer tool durations can be achieved. Statistical analyses on the model parameters were carried out to confirm the presented findings. The analysis of the effect of the cooling approach on the main wear mechanisms was also reported. At low cutting speed, adhesion and chipping phenomena affected the tool duration mainly in cryogenic milling.
INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY
Conventional cooling
Cryogenics
Milling
Tool life
Tool wear
File in questo prodotto:
File Dimensione Formato  
Experimental investigation of the effects of cryogenic cooling on tool life in Ti6Al4V milling.pdf

accesso aperto

: Publisher’s version
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1173525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact