We performed X-ray microtomographic observations of wet-snow metamorphism during controlled continuous melting and melt-freeze events in the laboratory. Three blocks of snow were sieved into boxes and subjected to cyclic, superficial heating or heating-cooling to reproduce vertical water infiltration patterns in snow similarly to natural conditions. Periodically, samples were taken at different heights and scanned. Results suggest that wet-snow metamorphism dynamics are highly heterogeneous even in an initially homogeneous snowpack. Consistent with previous work, we observed an increase with time in the thickness of the ice structure, which is a measure of grain size. However, this was coupled with large temporal scatter between consecutive measurements of the specific surface area and of the statistical moments of grain thickness distributions. Because of marked differences in the right tail, grain thickness distributions did not show shape invariance with time, contrary to previous analyses. In our experiments, wet-snow metamorphism showed two strikingly different patterns: homogeneous coarsening superimposed by faster heterogeneous coarsening in areas that were affected by preferential percolation of water. Liquid water movement in snow and fast structural evolution may be thus intrinsically coupled by early formation of preferential flow at local scale. These observations suggest that further experiments are highly needed to fully understand wet-snow metamorphism and infiltration patterns in a natural snowpack.

Early formation of preferential flow in a homogeneous snowpack observed by micro-CT

De Michele C.
2017-01-01

Abstract

We performed X-ray microtomographic observations of wet-snow metamorphism during controlled continuous melting and melt-freeze events in the laboratory. Three blocks of snow were sieved into boxes and subjected to cyclic, superficial heating or heating-cooling to reproduce vertical water infiltration patterns in snow similarly to natural conditions. Periodically, samples were taken at different heights and scanned. Results suggest that wet-snow metamorphism dynamics are highly heterogeneous even in an initially homogeneous snowpack. Consistent with previous work, we observed an increase with time in the thickness of the ice structure, which is a measure of grain size. However, this was coupled with large temporal scatter between consecutive measurements of the specific surface area and of the statistical moments of grain thickness distributions. Because of marked differences in the right tail, grain thickness distributions did not show shape invariance with time, contrary to previous analyses. In our experiments, wet-snow metamorphism showed two strikingly different patterns: homogeneous coarsening superimposed by faster heterogeneous coarsening in areas that were affected by preferential percolation of water. Liquid water movement in snow and fast structural evolution may be thus intrinsically coupled by early formation of preferential flow at local scale. These observations suggest that further experiments are highly needed to fully understand wet-snow metamorphism and infiltration patterns in a natural snowpack.
2017
coarsening
cold laboratory
melt-freeze
preferential flow
wet-snow metamorphism
X-ray microcomputed tomography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1172507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact