Motion segmentation, i.e., the problem of clustering data in multiple images based on different 3D motions, is an important task for reconstructing and understanding dynamic scenes. In this paper we address motion segmentation in multiple images by combining partial results coming from triplets of images, which are obtained by fitting a number of trifocal tensors to correspondences. We exploit the fact that the trifocal tensor is a stronger model than the fundamental matrix, as it provides fewer but more reliable matches over three images than fundamental matrices provide over the two. We also consider an alternative solution which merges partial results coming from both triplets and pairs of images, showing the strength of three-frame segmentation in a combination with two-frame segmentation. Our real experiments on standard as well as new datasets demonstrate the superior accuracy of the proposed approaches when compared to previous techniques.

On the Usage of the Trifocal Tensor in Motion Segmentation

Arrigoni, Federica;Magri, Luca;
2020-01-01

Abstract

Motion segmentation, i.e., the problem of clustering data in multiple images based on different 3D motions, is an important task for reconstructing and understanding dynamic scenes. In this paper we address motion segmentation in multiple images by combining partial results coming from triplets of images, which are obtained by fitting a number of trifocal tensors to correspondences. We exploit the fact that the trifocal tensor is a stronger model than the fundamental matrix, as it provides fewer but more reliable matches over three images than fundamental matrices provide over the two. We also consider an alternative solution which merges partial results coming from both triplets and pairs of images, showing the strength of three-frame segmentation in a combination with two-frame segmentation. Our real experiments on standard as well as new datasets demonstrate the superior accuracy of the proposed approaches when compared to previous techniques.
2020
Computer Vision, ECCV 2020: 16th European Conference
978-3-030-58564-8
978-3-030-58565-5
File in questo prodotto:
File Dimensione Formato  
trifocalECCV2020.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1170768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact