Augmented Reality began to be used in the last decade to guide and assist the surgeon during minimally invasive surgery. In many AR-based surgical navigation systems, a patient-specific 3D model of the surgical procedure target organ is generated from preoperative images and overlaid on the real views of the surgical field. We are currently developing an AR-based navigation system to support robot-assisted radical prostatectomy (AR-RARP) and in this paper we address the registration and localization challenge of the 3D prostate model during the procedure, evaluating the performances of a Successive Quadratic Programming (SQP) non-linear optimization technique used to align the coordinates of a deformable 3D model to those of the surgical environment. We compared SQP results in solving the 3D pose problem with those provided by the Matlab Computer Vision Toolkit perspective-three-point algorithm, highlighting the differences between the two approaches.

Non-linear-Optimization Using SQP for 3D Deformable Prostate Model Pose Estimation in Minimally Invasive Surgery

Gribaudo M.;Piazzolla P.;
2020-01-01

Abstract

Augmented Reality began to be used in the last decade to guide and assist the surgeon during minimally invasive surgery. In many AR-based surgical navigation systems, a patient-specific 3D model of the surgical procedure target organ is generated from preoperative images and overlaid on the real views of the surgical field. We are currently developing an AR-based navigation system to support robot-assisted radical prostatectomy (AR-RARP) and in this paper we address the registration and localization challenge of the 3D prostate model during the procedure, evaluating the performances of a Successive Quadratic Programming (SQP) non-linear optimization technique used to align the coordinates of a deformable 3D model to those of the surgical environment. We compared SQP results in solving the 3D pose problem with those provided by the Matlab Computer Vision Toolkit perspective-three-point algorithm, highlighting the differences between the two approaches.
2020
Advances in Intelligent Systems and Computing
978-3-030-17794-2
978-3-030-17795-9
Augmented Reality
Computed-assisted surgery
Performance evaluation
Prostatectomy
Robotic surgical procedures
Successive Quadratic Programming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1170627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact