This work proposes the quasi-distributed real-time monitoring and control of laser ablation (LA) of liver tissue. To confine the thermal damage, a pre-planning stage of the control strategy based on numerical simulations of the bioheat-transfer was developed to design the control parameters, then experimentally assessed. Fiber Bragg grating (FBG) sensors were employed to design the automatic thermometry system used for temperature feedback control for interstitial LA. The tissue temperature was maintained at a pre-set value, and the influence of different sensor locations (on the direction of the beam propagation and backward) on the thermal outcome was evaluated in comparison with the uncontrolled case. Results show that the implemented computational model was able to properly describe the temperature evolution of the irradiated tissue. Furthermore, the realized control strategy allowed for the accurate confinement of the laser-induced temperature increase, especially when the temperature control was actuated by sensors located in the direction of the beam propagation, as confirmed by the calculated fractions of necrotic tissues (e.g., 23 mm3 and 53 mm3 for the controlled and uncontrolled LA, respectively)
Quasi-distributed fiber optic sensor-based control system for interstitial laser ablation of tissue: theoretical and experimental investigations
Bianchi, Leonardo;Korganbayev, Sanzhar;Orrico, Annalisa;De Landro, Martina;Saccomandi, Paola
2021-01-01
Abstract
This work proposes the quasi-distributed real-time monitoring and control of laser ablation (LA) of liver tissue. To confine the thermal damage, a pre-planning stage of the control strategy based on numerical simulations of the bioheat-transfer was developed to design the control parameters, then experimentally assessed. Fiber Bragg grating (FBG) sensors were employed to design the automatic thermometry system used for temperature feedback control for interstitial LA. The tissue temperature was maintained at a pre-set value, and the influence of different sensor locations (on the direction of the beam propagation and backward) on the thermal outcome was evaluated in comparison with the uncontrolled case. Results show that the implemented computational model was able to properly describe the temperature evolution of the irradiated tissue. Furthermore, the realized control strategy allowed for the accurate confinement of the laser-induced temperature increase, especially when the temperature control was actuated by sensors located in the direction of the beam propagation, as confirmed by the calculated fractions of necrotic tissues (e.g., 23 mm3 and 53 mm3 for the controlled and uncontrolled LA, respectively)File | Dimensione | Formato | |
---|---|---|---|
boe-12-5-2841.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.