The network of collaborations in an open source project can reveal relevant emergent properties that influence its prospects of success. In this work, we analyze open source projects to determine whether they exhibit a rich-club behavior, i.e., a phenomenon where contributors with a high number of collaborations (i.e., strongly connected within the collaboration network) are likely to cooperate with other well-connected individuals. The presence or absence of a rich-club has an impact on the sustainability and robustness of the project. For this analysis, we build and study a dataset with the 100 most popular projects in GitHub, exploiting connectivity patterns in the graph structure of collaborations that arise from commits, issues and pull requests. Results show that rich-club behavior is present in all the projects, but only few of them have an evident club structure. We compute coefficients both for single source graphs and the overall interaction graph, showing that rich-club behavior varies across different layers of software development. We provide possible explanations of our results, as well as implications for further analysis.
Analyzing rich-club behavior in open source projects
Gasparini M.;Brambilla M.;
2019-01-01
Abstract
The network of collaborations in an open source project can reveal relevant emergent properties that influence its prospects of success. In this work, we analyze open source projects to determine whether they exhibit a rich-club behavior, i.e., a phenomenon where contributors with a high number of collaborations (i.e., strongly connected within the collaboration network) are likely to cooperate with other well-connected individuals. The presence or absence of a rich-club has an impact on the sustainability and robustness of the project. For this analysis, we build and study a dataset with the 100 most popular projects in GitHub, exploiting connectivity patterns in the graph structure of collaborations that arise from commits, issues and pull requests. Results show that rich-club behavior is present in all the projects, but only few of them have an evident club structure. We compute coefficients both for single source graphs and the overall interaction graph, showing that rich-club behavior varies across different layers of software development. We provide possible explanations of our results, as well as implications for further analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.