In a world more and more connected, new and complex interaction patterns can be extracted in the communication between people. This is extremely valuable for brands that can better understand the interests of users and the trends on social media to better target their products. In this paper, we aim to analyze the communities that arise around commercial brands on social networks to understand the meaning of similarity, collaboration, and interaction among users. We exploit the network that builds around the brands by encoding it into a graph model. We build a social network graph, considering user nodes and friendship relations; then we compare it with a heterogeneous graph model, where also posts and hashtags are considered as nodes and connected to the different node types; we finally build also a reduced network, generated by inducing direct user-to-user connections through the intermediate nodes (posts and hashtags). These different variants are encoded using graph representation learning, which generates a numerical vector for each node. Machine learning techniques are applied to these vectors to extract valuable insights for each user and for the communities they belong to. In the paper, we report on our experiments performed on an emerging fashion brand on Instagram, and we show that our approach is able to discriminate potential customers for the brand, and to highlight meaningful sub-communities composed by users that share the same kind of content on social networks.
Brand community analysis on social networks using graph representation learning
Brambilla M.;Gasparini M.
2019-01-01
Abstract
In a world more and more connected, new and complex interaction patterns can be extracted in the communication between people. This is extremely valuable for brands that can better understand the interests of users and the trends on social media to better target their products. In this paper, we aim to analyze the communities that arise around commercial brands on social networks to understand the meaning of similarity, collaboration, and interaction among users. We exploit the network that builds around the brands by encoding it into a graph model. We build a social network graph, considering user nodes and friendship relations; then we compare it with a heterogeneous graph model, where also posts and hashtags are considered as nodes and connected to the different node types; we finally build also a reduced network, generated by inducing direct user-to-user connections through the intermediate nodes (posts and hashtags). These different variants are encoded using graph representation learning, which generates a numerical vector for each node. Machine learning techniques are applied to these vectors to extract valuable insights for each user and for the communities they belong to. In the paper, we report on our experiments performed on an emerging fashion brand on Instagram, and we show that our approach is able to discriminate potential customers for the brand, and to highlight meaningful sub-communities composed by users that share the same kind of content on social networks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.