We propose a novel computational framework for the estimation of functional directional brain-to-heart interplay in an instantaneous fashion. The framework is based on inhomogeneous point-process models for human heartbeat dynamics and employs inverse-Gaussian probability density functions characterizing the timing of R-peak events. The instantaneous estimation of the functional directional coupling is based on the definition of point-process transfer entropy, which is here retrieved from heart rate variability (HRV) and Electroencephalography (EEG) power spectral series gathered from 12 healthy subjects undergoing significant sympathovagal changes induced by a cold-pressor test. Results suggest that EEG oscillations dynamically influence heartbeat dynamics with specific time delays in the 30-60s and 90-120s ranges, and through a functional activity over specific cortical regions.

An Inhomogeneous Point-process Model for the Assessment of the Brain-to-Heart Functional Interplay: A Pilot Study

Barbieri R.;
2020-01-01

Abstract

We propose a novel computational framework for the estimation of functional directional brain-to-heart interplay in an instantaneous fashion. The framework is based on inhomogeneous point-process models for human heartbeat dynamics and employs inverse-Gaussian probability density functions characterizing the timing of R-peak events. The instantaneous estimation of the functional directional coupling is based on the definition of point-process transfer entropy, which is here retrieved from heart rate variability (HRV) and Electroencephalography (EEG) power spectral series gathered from 12 healthy subjects undergoing significant sympathovagal changes induced by a cold-pressor test. Results suggest that EEG oscillations dynamically influence heartbeat dynamics with specific time delays in the 30-60s and 90-120s ranges, and through a functional activity over specific cortical regions.
2020
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
1557170X
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1170326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact