Brain dynamics recorded through electroencephalography (EEG) have been proven to be the output of a nonstationary and nonlinear system. Thus, multifractality of EEG series has been exploited as a useful tool for a neurophysiological characterization in health and disease. However, the role of EEG multifractality under peripheral stress is unknown. In this study, we propose to make use of a novel tool, the recently defined non-Gaussian multiscale analysis, to investigate brain dynamics in the range of 4-8Hz following a cold-pressor test versus a resting state. The method builds on the wavelet p-leader multifractal spectrum to quantify different types of departure from Gaussian and linear properties, and is compared here to standard linear descriptive indices. Results suggest that the proposed non-Gaussian multiscale indices were able to detect expected changes over the somatosensory and premotor cortices, over regions different from those detected by linear analyses. They further indicate that preferred responses for the contralateral somatosensory cortex occur at scales 2.5s and 5s. These findings contribute to the characterization of the so-called central autonomic network, linking dynamical changes at a peripheral and a central nervous system levels.
Wavelet p-Leader Non-Gaussian Multiscale Expansions for EEG series: An Exploratory Study on Cold-Pressor Test
Barbieri R.;Abry P.
2019-01-01
Abstract
Brain dynamics recorded through electroencephalography (EEG) have been proven to be the output of a nonstationary and nonlinear system. Thus, multifractality of EEG series has been exploited as a useful tool for a neurophysiological characterization in health and disease. However, the role of EEG multifractality under peripheral stress is unknown. In this study, we propose to make use of a novel tool, the recently defined non-Gaussian multiscale analysis, to investigate brain dynamics in the range of 4-8Hz following a cold-pressor test versus a resting state. The method builds on the wavelet p-leader multifractal spectrum to quantify different types of departure from Gaussian and linear properties, and is compared here to standard linear descriptive indices. Results suggest that the proposed non-Gaussian multiscale indices were able to detect expected changes over the somatosensory and premotor cortices, over regions different from those detected by linear analyses. They further indicate that preferred responses for the contralateral somatosensory cortex occur at scales 2.5s and 5s. These findings contribute to the characterization of the so-called central autonomic network, linking dynamical changes at a peripheral and a central nervous system levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.