The renovation and construction of buildings presents an opportunity for climate change mitigation in urban environments. Bio-based construction is particularly promising since the plant’s sequestered carbon offsets the building’s carbon emissions. However, the required land to cultivate suitable biomass and the feasibility of environmentally sustainable materials for resilient cities should be understood. This study analyzes timber, straw, hemp and cork construction and renovation in Europe. A prediction-based model, tuned-up on four systems (built environment, natural environment, carbon balance, industrial processing), converts construction activities until 2050 into required material, embodied land and carbon storage. A novel material-land nexus concept analyzes the required land for bio-based construction. Land transformation is not analyzed. The aim is to evaluate the biomass supply considering the current cross-sectoral use of land in Europe. The results indicate that current forests and wheat plantations are more than sufficient for supplying construction materials. Straw seems better than timber, in terms of resource availability and carbon storage potential. Cork is only favorable locally in southern dry countries. The current legal limitations hinder hemp’s potential at a large scale. A wider application of bio-based materials remains unrealistic until an appropriate legal framework is provided.

Land availability in Europe for a radical shift toward bio-based construction

Pittau, Francesco
2021-01-01

Abstract

The renovation and construction of buildings presents an opportunity for climate change mitigation in urban environments. Bio-based construction is particularly promising since the plant’s sequestered carbon offsets the building’s carbon emissions. However, the required land to cultivate suitable biomass and the feasibility of environmentally sustainable materials for resilient cities should be understood. This study analyzes timber, straw, hemp and cork construction and renovation in Europe. A prediction-based model, tuned-up on four systems (built environment, natural environment, carbon balance, industrial processing), converts construction activities until 2050 into required material, embodied land and carbon storage. A novel material-land nexus concept analyzes the required land for bio-based construction. Land transformation is not analyzed. The aim is to evaluate the biomass supply considering the current cross-sectoral use of land in Europe. The results indicate that current forests and wheat plantations are more than sufficient for supplying construction materials. Straw seems better than timber, in terms of resource availability and carbon storage potential. Cork is only favorable locally in southern dry countries. The current legal limitations hinder hemp’s potential at a large scale. A wider application of bio-based materials remains unrealistic until an appropriate legal framework is provided.
2021
File in questo prodotto:
File Dimensione Formato  
2021_Goeswein_SCS.pdf

accesso aperto

Descrizione: Articolo (open access)
: Publisher’s version
Dimensione 5.86 MB
Formato Adobe PDF
5.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1170056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 45
social impact