Dealing with complex engineering problems characterized by Big Data, particularly in structural engineering, has recently received considerable attention due to its high societal importance. Data-driven structural health monitoring (SHM) methods aim at assessing the structural state and detecting any adverse change caused by damage, so as to guarantee structural safety and serviceability. These methods rely on statistical pattern recognition, which provides opportunities to implement a long-term SHM strategy by processing measured vibration data. However, the successful implementation of the data-driven SHM strategies when Big Data are to be processed is still a challenging issue, since the procedures of feature extraction and/or feature classification may end up being time-consuming and complex. To enhance the current damage detection procedures, in this work we propose an unsupervised learning method based on time series analysis, deep learning and the Mahalanobis distance metric for feature extraction, dimensionality reduction and classification. The main novelty of this strategy is the simultaneous dealing with the significant issue of Big Data analytics for damage detection, and distinguishing damage states from the undamaged one in an unsupervised learning manner. Large-scale datasets relevant to a cable-stayed bridge have been handled to validate the effectiveness of the proposed data-driven approach. Results have shown that the approach is highly successful in detecting early damage, even when Big Data are to be processed.

An Unsupervised Learning Approach for Early Damage Detection by Time Series Analysis and Deep Neural Network to Deal with Output-Only (Big) Data

Entezami, Alireza;Mariani, Stefano
2020-01-01

Abstract

Dealing with complex engineering problems characterized by Big Data, particularly in structural engineering, has recently received considerable attention due to its high societal importance. Data-driven structural health monitoring (SHM) methods aim at assessing the structural state and detecting any adverse change caused by damage, so as to guarantee structural safety and serviceability. These methods rely on statistical pattern recognition, which provides opportunities to implement a long-term SHM strategy by processing measured vibration data. However, the successful implementation of the data-driven SHM strategies when Big Data are to be processed is still a challenging issue, since the procedures of feature extraction and/or feature classification may end up being time-consuming and complex. To enhance the current damage detection procedures, in this work we propose an unsupervised learning method based on time series analysis, deep learning and the Mahalanobis distance metric for feature extraction, dimensionality reduction and classification. The main novelty of this strategy is the simultaneous dealing with the significant issue of Big Data analytics for damage detection, and distinguishing damage states from the undamaged one in an unsupervised learning manner. Large-scale datasets relevant to a cable-stayed bridge have been handled to validate the effectiveness of the proposed data-driven approach. Results have shown that the approach is highly successful in detecting early damage, even when Big Data are to be processed.
2020
7th International Electronic Conference on Sensors and Applications
structural health monitoring; early damage detection; Big Data; unsupervised learning; time series analysis; deep neural networks; Mahalanobis distance
File in questo prodotto:
File Dimensione Formato  
engproc-02-00017.pdf

accesso aperto

: Publisher’s version
Dimensione 597.41 kB
Formato Adobe PDF
597.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1169765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact