We present D2VFS, a run-time technique to intelligently regulate supply voltage and accordingly reconfigure clock frequency of intermittently-computing devices. These devices rely on energy harvesting to power their operation and on small capacitors as energy buffer. Statically setting their clock frequency fails to achieve energy efficiency, as the setting remains oblivious of fluctuations in capacitor voltage and of their impact on a microcontroller operating range. In contrast, D2VFS captures these dynamics and places the microcontroller in the most efficient configuration by regulating the microcontroller supply voltage and changing its clock frequency. Our evaluation shows that D2VFS markedly increases energy efficiency; for example, ultimately enabling a 30-300% reduction of workload completion times.

Intermittent Computing with Dynamic Voltage and Frequency Scaling

Luca Mottola;
2020-01-01

Abstract

We present D2VFS, a run-time technique to intelligently regulate supply voltage and accordingly reconfigure clock frequency of intermittently-computing devices. These devices rely on energy harvesting to power their operation and on small capacitors as energy buffer. Statically setting their clock frequency fails to achieve energy efficiency, as the setting remains oblivious of fluctuations in capacitor voltage and of their impact on a microcontroller operating range. In contrast, D2VFS captures these dynamics and places the microcontroller in the most efficient configuration by regulating the microcontroller supply voltage and changing its clock frequency. Our evaluation shows that D2VFS markedly increases energy efficiency; for example, ultimately enabling a 30-300% reduction of workload completion times.
2020
Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks
9780994988645
Transiently Powered Computers, Dynamic Voltage and Frequency Scaling, Intermittent Computing
File in questo prodotto:
File Dimensione Formato  
ahmed20dvfs.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1169462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact