Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.
Automatic stimuli classification from ERP data for augmented communication via Brain-Computer Interfaces
Leoni J.;Tanelli M.;Strada S. C.;
2020-01-01
Abstract
Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.File | Dimensione | Formato | |
---|---|---|---|
ICHMS-ERP.pdf
Accesso riservato
Descrizione: Articolo versione finale accepted
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.