The bubble shape is a required parameter in the modeling and design of multiphase reactors. This communication contributes to the broader discussion and closes the knowledge gap by providing a practical correlation for the bubble shape. The correlation is based on a very large experimental dataset, encompassing a wide range of Morton numbers (Log10(Mo) in the range of −10.8 and 2.3), flow conditions (single bubbles and dense bubbly flows) and considering both gravity-driven flows and flows with an extra-external pressure gradient (counter-current flows). The experimental data were post-processed to derive a simple and physics-based correlation, relating the bubble aspect ratio to the bubble Reynolds and Eötvös numbers. This correlation provides a more accurate description and covers a wider range of applicability compared with literature correlations. As such, it can be helpful in the estimation of the interfacial area and velocity of a dispersed phase rising in a continuous phase.
Aspect ratio of bubbles in different liquid media: A novel correlation
Besagni G.;
2020-01-01
Abstract
The bubble shape is a required parameter in the modeling and design of multiphase reactors. This communication contributes to the broader discussion and closes the knowledge gap by providing a practical correlation for the bubble shape. The correlation is based on a very large experimental dataset, encompassing a wide range of Morton numbers (Log10(Mo) in the range of −10.8 and 2.3), flow conditions (single bubbles and dense bubbly flows) and considering both gravity-driven flows and flows with an extra-external pressure gradient (counter-current flows). The experimental data were post-processed to derive a simple and physics-based correlation, relating the bubble aspect ratio to the bubble Reynolds and Eötvös numbers. This correlation provides a more accurate description and covers a wider range of applicability compared with literature correlations. As such, it can be helpful in the estimation of the interfacial area and velocity of a dispersed phase rising in a continuous phase.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0009250919308735-main.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
11311-1168808_Besagni.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
981.93 kB
Formato
Adobe PDF
|
981.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.