The purpose of this study was to establish a methodology and technology for the development of an MRI-based radiomic signature for prognosis of overall survival (OS) in nasopharyngeal cancer from non-endemic areas. The signature was trained using 1072 features extracted from the main tumor in T1-weighted and T2-weighted images of 142 patients. A model with 2 radiomic features was obtained (RAD model). Tumor volume and a signature obtained by training the model on permuted survival data (RADperm model) were used as a reference. A 10-fold cross-validation was used to validate the signature. Harrel's C-index was used as performance metric. A statistical comparison of the RAD, RADperm and volume was performed using Wilcoxon signed rank tests. The C-index for the RAD model was higher compared to the one of the RADperm model (0.69±0.08 vs 0.47±0.05), which ensures absence of overfitting. Also, the signature obtained with the RAD model had an improved C-index compared to tumor volume alone (0.69±0.08 vs 0.65±0.06), suggesting that the radiomic signature provides additional prognostic information.

Methodology and technology for the development of a prognostic MRI-based radiomic model for the outcome of head and neck cancer patients

Bologna, Marco;Corino, Valentina;Mainardi, Luca
2020-01-01

Abstract

The purpose of this study was to establish a methodology and technology for the development of an MRI-based radiomic signature for prognosis of overall survival (OS) in nasopharyngeal cancer from non-endemic areas. The signature was trained using 1072 features extracted from the main tumor in T1-weighted and T2-weighted images of 142 patients. A model with 2 radiomic features was obtained (RAD model). Tumor volume and a signature obtained by training the model on permuted survival data (RADperm model) were used as a reference. A 10-fold cross-validation was used to validate the signature. Harrel's C-index was used as performance metric. A statistical comparison of the RAD, RADperm and volume was performed using Wilcoxon signed rank tests. The C-index for the RAD model was higher compared to the one of the RADperm model (0.69±0.08 vs 0.47±0.05), which ensures absence of overfitting. Also, the signature obtained with the RAD model had an improved C-index compared to tumor volume alone (0.69±0.08 vs 0.65±0.06), suggesting that the radiomic signature provides additional prognostic information.
Proceedings of the 42nd IEEE EMBS Annual Conference
Humans
Magnetic Resonance Imaging
Prognosis
Retrospective Studies
Head and Neck Neoplasms
Nasopharyngeal Neoplasms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1168514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact