This study focuses on calibration and test campaigns of an IoT camera-based sensor system to monitor occupancy, as part of an ongoing research project aiming at defining a Building Management System (BMS) for facility management based on an occupancy-oriented Digital Twin (DT). The research project aims to facilitate the optimization of building operational stage through advanced monitoring techniques and data analytics. The quality of collected data, which are the input for analyses and simulations on the DT virtual entity, is critical to ensure the quality of the results. Therefore, calibration and test campaigns are essential to ensure data quality and efficiency of the IoT sensor system. The paper describes the general methodology for the BMS definition, and method and results of first stages of the research. The preliminary analyses included Indicative Post-Occupancy Evaluations (POEs) supported by Building Information Modelling (BIM) to optimize sensor system planning. Test campaign are then performed to evaluate collected data quality and system efficiency. The method was applied on a Department of Politecnico di Milano. The period of the year in which tests are performed was critical for lighting conditions. In addition, spaces’ geometric features and user behavior caused major issues and faults in the system.Incorrect boundary definition: areas that are not covered by boundaries; thus, they are not monitored

Towards an Occupancy-Oriented Digital Twin for Facility Management: Test Campaign and Sensors Assessment

E. Seghezzi;M. Locatelli;L. Pellegrini;G. Pattini;
2021

Abstract

This study focuses on calibration and test campaigns of an IoT camera-based sensor system to monitor occupancy, as part of an ongoing research project aiming at defining a Building Management System (BMS) for facility management based on an occupancy-oriented Digital Twin (DT). The research project aims to facilitate the optimization of building operational stage through advanced monitoring techniques and data analytics. The quality of collected data, which are the input for analyses and simulations on the DT virtual entity, is critical to ensure the quality of the results. Therefore, calibration and test campaigns are essential to ensure data quality and efficiency of the IoT sensor system. The paper describes the general methodology for the BMS definition, and method and results of first stages of the research. The preliminary analyses included Indicative Post-Occupancy Evaluations (POEs) supported by Building Information Modelling (BIM) to optimize sensor system planning. Test campaign are then performed to evaluate collected data quality and system efficiency. The method was applied on a Department of Politecnico di Milano. The period of the year in which tests are performed was critical for lighting conditions. In addition, spaces’ geometric features and user behavior caused major issues and faults in the system.Incorrect boundary definition: areas that are not covered by boundaries; thus, they are not monitored
File in questo prodotto:
File Dimensione Formato  
applsci-11-03108-v2 (1) rid.pdf

accesso aperto

: Publisher’s version
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1168391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact