We present Graph Random Neural Features (GRNF), a novel embedding method from graph-structured data to real vectors based on a family of graph neural networks. The embedding naturally deals with graph isomorphism and preserves the metric structure of the graph domain, in probability. In addition to being an explicit embedding method, it also allows us to efficiently and effectively approximate graph metric distances (as well as complete kernel functions); a criterion to select the embedding dimension trading off the approximation accuracy with the computational cost is also provided. GRNF can be used within traditional processing methods or as a training-free input layer of a graph neural network. The theoretical guarantees that accompany GRNF ensure that the considered graph distance is metric, hence allowing to distinguish any pair of non-isomorphic graphs.

Graph Random Neural Features for Distance-Preserving Graph Representations

C. Alippi;
2020-01-01

Abstract

We present Graph Random Neural Features (GRNF), a novel embedding method from graph-structured data to real vectors based on a family of graph neural networks. The embedding naturally deals with graph isomorphism and preserves the metric structure of the graph domain, in probability. In addition to being an explicit embedding method, it also allows us to efficiently and effectively approximate graph metric distances (as well as complete kernel functions); a criterion to select the embedding dimension trading off the approximation accuracy with the computational cost is also provided. GRNF can be used within traditional processing methods or as a training-free input layer of a graph neural network. The theoretical guarantees that accompany GRNF ensure that the considered graph distance is metric, hence allowing to distinguish any pair of non-isomorphic graphs.
2020
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:10968-10977, 2020
File in questo prodotto:
File Dimensione Formato  
zambon20a.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 869.07 kB
Formato Adobe PDF
869.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1167397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact