Energy disaggregation aims at reconstructing the power consumed by each electric appliance available in a household from the aggregate power readings collected by a single-point smart meter. With the ultimate goal of fully automatizing this procedure, we first estimate a set of jump models, each of them describing the consumption behaviour of each electric appliance. By representing the total power consumed at the household level as the sum of the outputs of the estimated jump models, a filtering algorithm, based on dynamic programming, is then employed to reconstruct, in an iterative way, the power consumption at an individual appliance level.
Jump model learning and filtering for energy end-use disaggregation
Breschi V.;
2018-01-01
Abstract
Energy disaggregation aims at reconstructing the power consumed by each electric appliance available in a household from the aggregate power readings collected by a single-point smart meter. With the ultimate goal of fully automatizing this procedure, we first estimate a set of jump models, each of them describing the consumption behaviour of each electric appliance. By representing the total power consumed at the household level as the sum of the outputs of the estimated jump models, a filtering algorithm, based on dynamic programming, is then employed to reconstruct, in an iterative way, the power consumption at an individual appliance level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.