Mobility is undergoing dramatic transformations, that are driven by new needs of the users and environmental concerns. The most mature one is the process of Electric Vehicles (EVs) adoption, but it is still struggling to affirm itself due to many social and economic barriers that play a crucial role in this process, ranging from level of education, environmental awareness, age and census. This work aims at contributing to the study of this adoption process through a data-based lens. To this end we setup a social network, whose topology is built by using proximity measures that emerge from the analysis of real trips, while the initial disposition of the each driver towards the EV technology is inferred from its real mobility patterns. A cascade model is then simulated to investigate the dynamics of the adoption process under different scenarios.

Social network analysis of electric vehicles adoption: A data-based approach

Breschi V.;Tanelli M.;Strada S.;
2020-01-01

Abstract

Mobility is undergoing dramatic transformations, that are driven by new needs of the users and environmental concerns. The most mature one is the process of Electric Vehicles (EVs) adoption, but it is still struggling to affirm itself due to many social and economic barriers that play a crucial role in this process, ranging from level of education, environmental awareness, age and census. This work aims at contributing to the study of this adoption process through a data-based lens. To this end we setup a social network, whose topology is built by using proximity measures that emerge from the analysis of real trips, while the initial disposition of the each driver towards the EV technology is inferred from its real mobility patterns. A cascade model is then simulated to investigate the dynamics of the adoption process under different scenarios.
2020
Proceedings of the 2020 IEEE International Conference on Human-Machine Systems, ICHMS 2020
978-1-7281-5871-6
Data analysis
Electric Vehicles
Social Networks
File in questo prodotto:
File Dimensione Formato  
11311-1166999_Breschi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 426.15 kB
Formato Adobe PDF
426.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1166999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact