The role of rectus femoris (RF) muscle during walking was analyzed through musculoskeletal models to understand the effects of muscle weakness and hyperactivity. Such understanding is fundamental when dealing with pathological gait, but the contribution of RF as a bi-articular muscle is particularly difficult to estimate. Anybody software was used for inverse dynamics computation, and SimWise-4D for forward dynamics simulations. RF force was changed in the range of 0 to 150%, and the resulting kinematics were analyzed. Inverse dynamics showed a short positive RF power in correspondence with the onset of knee extension in the swing phase. Forward dynamics simulations showed an increasing knee flexion and initial toe contact when the RF force was decreased, and increasing knee extension and difficult foot clearance when the RF force was increased. The step became shorter with both increased and reduced RF force. In conclusion, the RF actively contributes to the knee extension in the swing phase. RF also contributes to obtaining a proper step length and to preparing the foot for initial heel contact. So the effect of RF muscle as a bi-articular muscle seems fundamental in controlling the motion of distal segments. RF overactivity should be considered as a possible cause for poor foot clearance in some clinical cases, while RF weakness should be considered in cases with apparent equinus.

The effects of the rectus femoris muscle on knee and foot kinematics during the swing phase of normalwalking

Frigo C. A.;
2020-01-01

Abstract

The role of rectus femoris (RF) muscle during walking was analyzed through musculoskeletal models to understand the effects of muscle weakness and hyperactivity. Such understanding is fundamental when dealing with pathological gait, but the contribution of RF as a bi-articular muscle is particularly difficult to estimate. Anybody software was used for inverse dynamics computation, and SimWise-4D for forward dynamics simulations. RF force was changed in the range of 0 to 150%, and the resulting kinematics were analyzed. Inverse dynamics showed a short positive RF power in correspondence with the onset of knee extension in the swing phase. Forward dynamics simulations showed an increasing knee flexion and initial toe contact when the RF force was decreased, and increasing knee extension and difficult foot clearance when the RF force was increased. The step became shorter with both increased and reduced RF force. In conclusion, the RF actively contributes to the knee extension in the swing phase. RF also contributes to obtaining a proper step length and to preparing the foot for initial heel contact. So the effect of RF muscle as a bi-articular muscle seems fundamental in controlling the motion of distal segments. RF overactivity should be considered as a possible cause for poor foot clearance in some clinical cases, while RF weakness should be considered in cases with apparent equinus.
2020
Foot kinematics
Forward modeling
Gait cycle
Knee kinematics
Musculoskeletal modeling
Normal gait
Rectus femoris
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1166989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact