In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants, the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant, hydrogen fueled and scalable to MW-size, designed to provide grid support. In this work, different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model, validated through dedicated experiments. The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency, despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency, adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.

Modelling and optimization of a flexible hydrogen-fueled pressurized PEMFC power plant for grid balancing purposes

E. Crespi;G. Guandalini;S. Campanari
2021

Abstract

In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants, the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant, hydrogen fueled and scalable to MW-size, designed to provide grid support. In this work, different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model, validated through dedicated experiments. The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency, despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency, adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
PEM fuel cell
Flexibility
MW-scale plant
Grid balancing
Pressurized fuel cell
File in questo prodotto:
File Dimensione Formato  
Versione Pubblicata.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1166964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact