We propose a numerical methodology to combine detailed microkinetic modeling and Eulerian-Eulerian methods for the simulation of industrial fluidized bed reactors. An operator splitting-based approach has been applied to solve the detailed kinetics coupled with the solution of multiphase gas-solid flows. Lab and industrial reactor configurations are simulated to assess the capability and the accuracy of the method by using the oxidative coupling of methane as a showcase. A good agreement with lab-scale experimental data (deviations below 10%) is obtained. Moreover, in this specific case, the proposed framework provides a 4-fold reduction of the computational cost required to reach the steady-state when compared to the approach of linearizing the chemical source term. As a whole, the work paves the way to the incorporation of detailed kinetics in the simulation of industrial fluidized reactors.

Coupling Euler–Euler and Microkinetic Modeling for the Simulation of Fluidized Bed Reactors: an Application to the Oxidative Coupling of Methane

Micale, Daniele;Uglietti, Riccardo;Bracconi, Mauro;Maestri, Matteo
2021-01-01

Abstract

We propose a numerical methodology to combine detailed microkinetic modeling and Eulerian-Eulerian methods for the simulation of industrial fluidized bed reactors. An operator splitting-based approach has been applied to solve the detailed kinetics coupled with the solution of multiphase gas-solid flows. Lab and industrial reactor configurations are simulated to assess the capability and the accuracy of the method by using the oxidative coupling of methane as a showcase. A good agreement with lab-scale experimental data (deviations below 10%) is obtained. Moreover, in this specific case, the proposed framework provides a 4-fold reduction of the computational cost required to reach the steady-state when compared to the approach of linearizing the chemical source term. As a whole, the work paves the way to the incorporation of detailed kinetics in the simulation of industrial fluidized reactors.
2021
File in questo prodotto:
File Dimensione Formato  
acs.iecr.0c05845.pdf

accesso aperto

: Publisher’s version
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1165959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact