We study the equilibrium of a mechanical system composed by two rods that bend under the action of a pressure difference; they have one fixed endpoint and are partially in contact. This system can be viewed as a bi-valve made by two smooth leaflets that lean on each other. We obtain the balance equations of the mechanical system exploiting the principle of virtual work and the contact point is identified by a jump condition. The problem can be simplified exploiting a first integral. In the case of quadratic energy, another first integral exists: its peculiarity is discussed and a further reduction of the equations is carried out. Numerical integration of the differential system shows how the shape of the beams and the position of the contact point depend on the applied pressure. For small pressure, an asymptotic expansion in a small parameter allows us to find an approximate solutions of polynomial form which is in surprisingly good agreement with the solution of the original system of equations, even beyond the expected range of validity. Finally, the asymptotics predicts a value of the pressure that separates the contact from the no-contact regime of the beams that compares very well with the one numerically evaluated.

Equilibrium of Two Rods in Contact Under Pressure

Turzi, S;
2020-01-01

Abstract

We study the equilibrium of a mechanical system composed by two rods that bend under the action of a pressure difference; they have one fixed endpoint and are partially in contact. This system can be viewed as a bi-valve made by two smooth leaflets that lean on each other. We obtain the balance equations of the mechanical system exploiting the principle of virtual work and the contact point is identified by a jump condition. The problem can be simplified exploiting a first integral. In the case of quadratic energy, another first integral exists: its peculiarity is discussed and a further reduction of the equations is carried out. Numerical integration of the differential system shows how the shape of the beams and the position of the contact point depend on the applied pressure. For small pressure, an asymptotic expansion in a small parameter allows us to find an approximate solutions of polynomial form which is in surprisingly good agreement with the solution of the original system of equations, even beyond the expected range of validity. Finally, the asymptotics predicts a value of the pressure that separates the contact from the no-contact regime of the beams that compares very well with the one numerically evaluated.
File in questo prodotto:
File Dimensione Formato  
2021_QJMAM_Equilibrium of Two Rods in Contact Under Pressure.pdf

accesso aperto

Descrizione: Versione dell'editore
: Publisher’s version
Dimensione 742.68 kB
Formato Adobe PDF
742.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1165185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact