In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.

The virtual element method for a minimal surface problem

Antonietti P. F.;Verani M.
2020-01-01

Abstract

In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
2020
Minimal surface problem
Quasi-linear elliptic PDEs
Virtual element method
File in questo prodotto:
File Dimensione Formato  
2020-Antonietti-Bertoluzza-Prada-Verani-Calcolo.pdf

Accesso riservato

: Publisher’s version
Dimensione 5.55 MB
Formato Adobe PDF
5.55 MB Adobe PDF   Visualizza/Apri
11311-1164669_Antonietti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 8.46 MB
Formato Adobe PDF
8.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1164669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact