In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
The virtual element method for a minimal surface problem
Antonietti P. F.;Verani M.
2020-01-01
Abstract
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020-Antonietti-Bertoluzza-Prada-Verani-Calcolo.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.55 MB
Formato
Adobe PDF
|
5.55 MB | Adobe PDF | Visualizza/Apri |
11311-1164669_Antonietti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
8.46 MB
Formato
Adobe PDF
|
8.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.