This paper presents the design and the characterization of a portable laser triangulation measurement system for measuring gap and flush in the car body assembly process. Targeting Human in the Loop (HILT) operations in the manufacturing sector, and in line with the vision of human empowerment with Industry 4.0 technologies, the instrument embeds features to ease operators’ activity and compensate possible misuse that could affect the robustness and the quality of data acquired. The device is based on a smartphone integrated with a miniaturized laser triangulation system installed in a cover. The device embodies additional sensors and control systems in order to guarantee operators’ safety (switching on and off the laser line based on specific conditions), support operators during the measurement execution task, and optimize the image acquisition process for minimizing the uncertainty associated to the measurement. The smartphone performs on-board processing and allows Wi-Fi communication with the plant IT infrastructure. Compliance to Industry 4.0 requirements is guaranteed using OPC-UA (Open Platform Communications—Unified Architecture) communication protocol enabling the exchange of live data with the plant middleware. The smartphone provides also an advanced high-resolution color display and well proven and ergonomic human–machine interfaces, which have been fully exploited in the design. The paper introduces the system optical layout and then presents the algorithms implemented to realize the gap and flush measurement. The paper finally presents the calibration of the instrument and estimates its calibration uncertainty in laboratory conditions. Then it discusses how performance decays when the operator handles the instrument on a reference car body. Finally, it shows the analysis of uncertainty when the device is used on real car bodies of different colors in a production line. It is observed that the measurement uncertainty of the whole measurement chain (measurand + instrument + operator + uncontrolled environmental conditions) is larger than the instrument calibration uncertainty because the measurement process is affected by the operator and the variable conditions of the production line.
A Smartphone Integrated Hand-Held Gap and Flush Measurement System for in Line Quality Control of Car Body Assembly
Chiariotti, Paolo;Paone, Nicola;Castellini, Paolo
2020-01-01
Abstract
This paper presents the design and the characterization of a portable laser triangulation measurement system for measuring gap and flush in the car body assembly process. Targeting Human in the Loop (HILT) operations in the manufacturing sector, and in line with the vision of human empowerment with Industry 4.0 technologies, the instrument embeds features to ease operators’ activity and compensate possible misuse that could affect the robustness and the quality of data acquired. The device is based on a smartphone integrated with a miniaturized laser triangulation system installed in a cover. The device embodies additional sensors and control systems in order to guarantee operators’ safety (switching on and off the laser line based on specific conditions), support operators during the measurement execution task, and optimize the image acquisition process for minimizing the uncertainty associated to the measurement. The smartphone performs on-board processing and allows Wi-Fi communication with the plant IT infrastructure. Compliance to Industry 4.0 requirements is guaranteed using OPC-UA (Open Platform Communications—Unified Architecture) communication protocol enabling the exchange of live data with the plant middleware. The smartphone provides also an advanced high-resolution color display and well proven and ergonomic human–machine interfaces, which have been fully exploited in the design. The paper introduces the system optical layout and then presents the algorithms implemented to realize the gap and flush measurement. The paper finally presents the calibration of the instrument and estimates its calibration uncertainty in laboratory conditions. Then it discusses how performance decays when the operator handles the instrument on a reference car body. Finally, it shows the analysis of uncertainty when the device is used on real car bodies of different colors in a production line. It is observed that the measurement uncertainty of the whole measurement chain (measurand + instrument + operator + uncontrolled environmental conditions) is larger than the instrument calibration uncertainty because the measurement process is affected by the operator and the variable conditions of the production line.File | Dimensione | Formato | |
---|---|---|---|
sensors-20-03300.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.79 MB
Formato
Adobe PDF
|
4.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.