A Cr-Cu surface alloy is synthesized using successive operations of Cr film deposition followed by mixing in a melted phase with the Cu substrate by a low-energy, high-current electron beam (LEHCEB). The parameters of LEHCEB are as follows: electron energy 20–30 keV and pulse duration 2–4 μs. Depending on the LEHCEB energy density, the concentration of Cr in the alloy is in the range from 60 to 20 at.%. The alloy microstructure has been analyzed, and its morphology is shown to represent nanosized chromium particles measuring 10–30 nm uniformly distributed in the copper matrix. The synthesized Cr-Cu surface alloys demonstrate a more than a factor of 3 a decrease in wear coefficient, which is nearly as low as the wear coefficient of Cr coatings. Some defects such as networks of cracks and pores, are observed in the lengthy regions of chromium. They are attributed to the tensile thermal stresses taking place during solidified melt cooling due to a large difference between the thermal expansion coefficients of copper and chromium.

Synthesis of a Cr-Cu surface alloy using a low-energy high-current electron beam

Bestetti M.
2019-01-01

Abstract

A Cr-Cu surface alloy is synthesized using successive operations of Cr film deposition followed by mixing in a melted phase with the Cu substrate by a low-energy, high-current electron beam (LEHCEB). The parameters of LEHCEB are as follows: electron energy 20–30 keV and pulse duration 2–4 μs. Depending on the LEHCEB energy density, the concentration of Cr in the alloy is in the range from 60 to 20 at.%. The alloy microstructure has been analyzed, and its morphology is shown to represent nanosized chromium particles measuring 10–30 nm uniformly distributed in the copper matrix. The synthesized Cr-Cu surface alloys demonstrate a more than a factor of 3 a decrease in wear coefficient, which is nearly as low as the wear coefficient of Cr coatings. Some defects such as networks of cracks and pores, are observed in the lengthy regions of chromium. They are attributed to the tensile thermal stresses taking place during solidified melt cooling due to a large difference between the thermal expansion coefficients of copper and chromium.
2019
Cr-Cu alloy
Nanostructuring
Pulsed electron beam
Surface alloy
Wear resistance
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S221137971832744X-main.pdf

accesso aperto

: Publisher’s version
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1164233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 17
social impact