The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.

Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

CHIARIOTTI, PAOLO;REVEL, Gian Marco;M. Martarelli
2015-01-01

Abstract

The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.
2015
Atti del XXII AIVELA Annual Meeting
Vibration measurement
Non destructive testing
Laser Doppler Vibrometry
File in questo prodotto:
File Dimensione Formato  
Chiariotti_2015_J._Phys.__Conf._Ser._658_012001.pdf

accesso aperto

: Publisher’s version
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1164069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact