Among the adsorption-based separation processes for gaseous mixtures, those exploiting pressure variations, so-called Pressure Swing Adsorption (PSA) processes, are the most popular. In this work, we focus on the specific PSA configuration known as Dual Reflux-Pressure Swing Adsorption (DR-PSA) given its ability to achieve sharp separations. In the case of binary mixtures, an analytical approach based on Equilibrium Theory has been proposed to identify the operating conditions for complete separation under the assumption of linear isotherms. This same approach is not available when the separation is not complete. Accordingly, in this work we study the features of non-complete separations by solving numerically a general DR-PSA model with parameter values suitable to approach equilibrium conditions (no mass transport resistances, no axial mixing, isothermal conditions and no pressure drop), thus reproducing the analytical solution when complete separations are examined. Even for non-complete separations, triangularly shaped regions at constant purity can be identified on a plane whose axes correspond to suitable design parameters. Moreover, we found a general indication on how to select the lateral feed injection position to limit the loss in product purities when complete separation is not established, whatever is the composition of the feeding mixture. Finally, a sensitivity analysis with respect to pressure ratio, light reflux ratio and heavy product flowrate is proposed in order to assess how to recover product purities according to the specific degrees of freedom of a DR-PSA apparatus.
Influence of the main operating parameters on the DRPSA process design based on the equilibrium theory
Rossi E.;Storti G.;Rota R.
2021-01-01
Abstract
Among the adsorption-based separation processes for gaseous mixtures, those exploiting pressure variations, so-called Pressure Swing Adsorption (PSA) processes, are the most popular. In this work, we focus on the specific PSA configuration known as Dual Reflux-Pressure Swing Adsorption (DR-PSA) given its ability to achieve sharp separations. In the case of binary mixtures, an analytical approach based on Equilibrium Theory has been proposed to identify the operating conditions for complete separation under the assumption of linear isotherms. This same approach is not available when the separation is not complete. Accordingly, in this work we study the features of non-complete separations by solving numerically a general DR-PSA model with parameter values suitable to approach equilibrium conditions (no mass transport resistances, no axial mixing, isothermal conditions and no pressure drop), thus reproducing the analytical solution when complete separations are examined. Even for non-complete separations, triangularly shaped regions at constant purity can be identified on a plane whose axes correspond to suitable design parameters. Moreover, we found a general indication on how to select the lateral feed injection position to limit the loss in product purities when complete separation is not established, whatever is the composition of the feeding mixture. Finally, a sensitivity analysis with respect to pressure ratio, light reflux ratio and heavy product flowrate is proposed in order to assess how to recover product purities according to the specific degrees of freedom of a DR-PSA apparatus.File | Dimensione | Formato | |
---|---|---|---|
Rossi et al - Adsorption 27 (2021) 27.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.