The space debris population is continuously growing and it represents a potential issue for spacecraft. New collisions could exponentially rise the amount of debris and so the level of risk represented by these objects. The monitoring of space environment is necessary to prevent new collisions. For this reason, radar measurements are relevant, in particular to observe objects in Low Earth Orbit. Regarding the Italian contribution, there are two radars based on two different radio telescopes as receivers: the BIRALES and the BIRALET systems. We propose a detailed description of these systems, focusing on hardware and software components that permit to perform range and range rate measurement of resident space objects.
Exploitation of bi-static radar architectures for LEO Space Debris surveying and tracking: The BIRALES/BlRALET project
Di Lizia P.;Purpura G.;Massari M.
2020-01-01
Abstract
The space debris population is continuously growing and it represents a potential issue for spacecraft. New collisions could exponentially rise the amount of debris and so the level of risk represented by these objects. The monitoring of space environment is necessary to prevent new collisions. For this reason, radar measurements are relevant, in particular to observe objects in Low Earth Orbit. Regarding the Italian contribution, there are two radars based on two different radio telescopes as receivers: the BIRALES and the BIRALET systems. We propose a detailed description of these systems, focusing on hardware and software components that permit to perform range and range rate measurement of resident space objects.File | Dimensione | Formato | |
---|---|---|---|
PODDA01-20.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.