Transcatheter therapies are emerging for functional mitral regurgitation (FMR) treatment, however there is lack of pathological models for their preclinical assessment. We investigated the applicability of deer hearts for this purpose. 8 whole deer hearts were housed in a pulsatile flow bench. At baseline, all mitral valves featured normal coaptation. The pathological state was induced by 60-minutes intraventricular constant pressurization. It caused mitral annulus dilation (antero-posterior diameter increase from 31.8 ± 5.6 mm to 39.5 ± 4.9 mm, p = 0.001), leaflets tethering (maximal tenting height increase from 7.3 ± 2.5 mm to 12.7 ± 3.4 mm, p < 0.001) and left ventricular diameter increase (from 67.8 ± 7.5 mm to 79.4 ± 6.5 mm, p = 0.004). These geometrical reconfigurations led to restricted mitral valve leaflets motion and leaflet coaptation loss. Preliminary feasibility assessment of two FMR treatments was performed in the developed model. Deer hearts showed ability to dilate under constant pressurization and have potential to be used for realistic preclinical research of novel FMR therapies. [Figure not available: see fulltext.]
Ex Vivo Model of Functional Mitral Regurgitation Using Deer Hearts
Jaworek M.;Mangini A.;Maroncelli E.;Lucherini F.;Salurso E.;Votta E.;Fiore G. B.;Vismara R.
2020-01-01
Abstract
Transcatheter therapies are emerging for functional mitral regurgitation (FMR) treatment, however there is lack of pathological models for their preclinical assessment. We investigated the applicability of deer hearts for this purpose. 8 whole deer hearts were housed in a pulsatile flow bench. At baseline, all mitral valves featured normal coaptation. The pathological state was induced by 60-minutes intraventricular constant pressurization. It caused mitral annulus dilation (antero-posterior diameter increase from 31.8 ± 5.6 mm to 39.5 ± 4.9 mm, p = 0.001), leaflets tethering (maximal tenting height increase from 7.3 ± 2.5 mm to 12.7 ± 3.4 mm, p < 0.001) and left ventricular diameter increase (from 67.8 ± 7.5 mm to 79.4 ± 6.5 mm, p = 0.004). These geometrical reconfigurations led to restricted mitral valve leaflets motion and leaflet coaptation loss. Preliminary feasibility assessment of two FMR treatments was performed in the developed model. Deer hearts showed ability to dilate under constant pressurization and have potential to be used for realistic preclinical research of novel FMR therapies. [Figure not available: see fulltext.]File | Dimensione | Formato | |
---|---|---|---|
Jaworek2020_Article_ExVivoModelOfFunctionalMitralR (1).pdf
accesso aperto
:
Publisher’s version
Dimensione
7.24 MB
Formato
Adobe PDF
|
7.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.