Artificial Intelligence (AI) algorithms, together with a general increased computational performance, allow nowadays exploring the use of Facial Expression Recognition (FER) as a method of recognizing human emotion through the use of neural networks. The interest in facial emotion and expression recognition in real-life situations is one of the current cutting-edge research challenges. In this context, the creation of an ecologically valid facial expression database is crucial. To this aim, a controlled experiment has been designed, in which thirty-five subjects aged 18–35 were asked to react spontaneously to a set of 48 validated images from two affective databases, IAPS and GAPED. According to the Self-Assessment Manikin, participants were asked to rate images on a 9-points visual scale on valence and arousal. Furthermore, they were asked to select one of the six Ekman’s basic emotions. During the experiment, an RGB-D camera was also used to record spontaneous facial expressions aroused in participants storing both the color and the depth frames to feed a Convolutional Neural Network (CNN) to perform FER. In every case, the prevalent emotion pointed out in the questionnaires matched with the expected emotion. CNN obtained a recognition rate of 75.02%, computed comparing the neural network results with the evaluations given by a human observer. These preliminary results have confirmed that this experimental setting is an effective starting point for building an ecologically valid database.

Building an ecologically valid facial expression database – behind the scenes

Nicolò Dozio;Francesco Ferrise;
2021-01-01

Abstract

Artificial Intelligence (AI) algorithms, together with a general increased computational performance, allow nowadays exploring the use of Facial Expression Recognition (FER) as a method of recognizing human emotion through the use of neural networks. The interest in facial emotion and expression recognition in real-life situations is one of the current cutting-edge research challenges. In this context, the creation of an ecologically valid facial expression database is crucial. To this aim, a controlled experiment has been designed, in which thirty-five subjects aged 18–35 were asked to react spontaneously to a set of 48 validated images from two affective databases, IAPS and GAPED. According to the Self-Assessment Manikin, participants were asked to rate images on a 9-points visual scale on valence and arousal. Furthermore, they were asked to select one of the six Ekman’s basic emotions. During the experiment, an RGB-D camera was also used to record spontaneous facial expressions aroused in participants storing both the color and the depth frames to feed a Convolutional Neural Network (CNN) to perform FER. In every case, the prevalent emotion pointed out in the questionnaires matched with the expected emotion. CNN obtained a recognition rate of 75.02%, computed comparing the neural network results with the evaluations given by a human observer. These preliminary results have confirmed that this experimental setting is an effective starting point for building an ecologically valid database.
2021
Proceedings of HCII 2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1161544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact