The modeling of energy systems with high penetration of renewables is becoming more relevant due to environmental and security issues. Researchers need to support policy makers in the development of energy policies through results from simulating tools able to guide them. The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation software to study the future best energy mix. In this study, EPLANopt is applied at country level to the Italian case study to assess the best configurations of the energy system in 2030. A scenario, the result of the optimization, is selected and compared to the Italian integrated energy and climate action plan scenario. It allows a further reduction of CO2 emissions equal to 10% at the same annual costs of the Italian integrated energy and climate action plan scenario. Both these results are then compared to climate change scenarios through the carbon budget indicator. This comparison shows the difficulties to meet the Paris Agreement target of limiting the temperature increase to 1.5 °C. The results also show that this target can only be met through an increase in the total annual costs in the order of 25% with respect to the integrated energy and climate action plan scenario. However, the study also shows how the shift in expenditure from fossil fuels, external expenses, to investment on the national territory represents an opportunity to enhance the national economy.

Multi-objective optimization model EPLANopt for energy transition analysis and comparison with climate-change scenarios

Manzolini G.;
2020-01-01

Abstract

The modeling of energy systems with high penetration of renewables is becoming more relevant due to environmental and security issues. Researchers need to support policy makers in the development of energy policies through results from simulating tools able to guide them. The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation software to study the future best energy mix. In this study, EPLANopt is applied at country level to the Italian case study to assess the best configurations of the energy system in 2030. A scenario, the result of the optimization, is selected and compared to the Italian integrated energy and climate action plan scenario. It allows a further reduction of CO2 emissions equal to 10% at the same annual costs of the Italian integrated energy and climate action plan scenario. Both these results are then compared to climate change scenarios through the carbon budget indicator. This comparison shows the difficulties to meet the Paris Agreement target of limiting the temperature increase to 1.5 °C. The results also show that this target can only be met through an increase in the total annual costs in the order of 25% with respect to the integrated energy and climate action plan scenario. However, the study also shows how the shift in expenditure from fossil fuels, external expenses, to investment on the national territory represents an opportunity to enhance the national economy.
2020
Climate-change
Energy scenarios
EPLANopt
Multi-objective optimization
Photovoltaics
Wind
File in questo prodotto:
File Dimensione Formato  
energies-13-03255(1).pdf

accesso aperto

: Publisher’s version
Dimensione 5.37 MB
Formato Adobe PDF
5.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1161255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 26
social impact