We investigate the stability of three thermoelastic beam systems with hyperbolic heat conduction. First, we study the Bresse-Gurtin-Pipkin system, providing a necessary and sufficient condition for the exponential stability and the optimal polynomial decay rate when the condition is violated. Second, we obtain analogous results for the Bresse-Maxwell-Cattaneo system, completing an analysis recently initiated in the literature. Finally, we consider the Timoshenko-Gurtin-Pipkin system and we find the optimal polynomial decay rate when the known exponential stability condition does not hold. As a byproduct, we fully recover the stability characterization of the Timoshenko-Maxwell-Cattaneo system. The classical “equal wave speeds” conditions are also recovered through singular limit procedures. Our conditions are compatible with some physical constraints on the coefficients as the positivity of the Poisson's ratio of the material. The analysis faces several challenges connected with the thermal damping, whose resolution rests on recently developed mathematical tools such as quantitative Riemann-Lebesgue lemmas.

On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction

Dell'Oro, Filippo
2021-01-01

Abstract

We investigate the stability of three thermoelastic beam systems with hyperbolic heat conduction. First, we study the Bresse-Gurtin-Pipkin system, providing a necessary and sufficient condition for the exponential stability and the optimal polynomial decay rate when the condition is violated. Second, we obtain analogous results for the Bresse-Maxwell-Cattaneo system, completing an analysis recently initiated in the literature. Finally, we consider the Timoshenko-Gurtin-Pipkin system and we find the optimal polynomial decay rate when the known exponential stability condition does not hold. As a byproduct, we fully recover the stability characterization of the Timoshenko-Maxwell-Cattaneo system. The classical “equal wave speeds” conditions are also recovered through singular limit procedures. Our conditions are compatible with some physical constraints on the coefficients as the positivity of the Poisson's ratio of the material. The analysis faces several challenges connected with the thermal damping, whose resolution rests on recently developed mathematical tools such as quantitative Riemann-Lebesgue lemmas.
2021
Bresse system; Timoshenko system; Gurtin-Pipkin law; Maxwell-Cattaneo law; Exponential stability; Polynomial stability
File in questo prodotto:
File Dimensione Formato  
11311-1160850_Dell_Oro.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 325.82 kB
Formato Adobe PDF
325.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1160850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact