Nowadays, the installation of pumps as turbines (PATs) in water supply systems (WSSs) is considered attractive because it is able to effectively combine the pressure regulation with the small-scale hydropower generation. One critical aspect concerns the behaviour of the PAT in the presence of solid particles in the flow which impinge against the inner surface of the device, producing a loss of material termed impact erosion. In this paper, the numerical assessment of PAT erosion is performed, by referring, as a case study, to an existing pressure control station in Southern Italy. The variable operative strategy (VOS) was applied to derive the frequency distribution of flow rates over the PAT operation, under the hypothesis of performing the hydraulic regulation of the hydropower plant. The commercial computational fluid dynamics (CFD) code Ansys Fluent was employed for simulating the liquid-solid flow inside the PAT and then coupled with an in-house code to estimate the erosion. The vulnerability of the PAT to wear was analysed by varying its flow rate, aiming at characterizing the decay of PAT components at a constant rotational speed. Finally, a detailed characterization of the PAT response to the particle impingement at its best efficiency point (BEP) was developed and discussed.
Numerical assessment of the vulnerability to impact erosion of a pump as turbine in a water supply system
G. V. Messa;
2020-01-01
Abstract
Nowadays, the installation of pumps as turbines (PATs) in water supply systems (WSSs) is considered attractive because it is able to effectively combine the pressure regulation with the small-scale hydropower generation. One critical aspect concerns the behaviour of the PAT in the presence of solid particles in the flow which impinge against the inner surface of the device, producing a loss of material termed impact erosion. In this paper, the numerical assessment of PAT erosion is performed, by referring, as a case study, to an existing pressure control station in Southern Italy. The variable operative strategy (VOS) was applied to derive the frequency distribution of flow rates over the PAT operation, under the hypothesis of performing the hydraulic regulation of the hydropower plant. The commercial computational fluid dynamics (CFD) code Ansys Fluent was employed for simulating the liquid-solid flow inside the PAT and then coupled with an in-house code to estimate the erosion. The vulnerability of the PAT to wear was analysed by varying its flow rate, aiming at characterizing the decay of PAT components at a constant rotational speed. Finally, a detailed characterization of the PAT response to the particle impingement at its best efficiency point (BEP) was developed and discussed.File | Dimensione | Formato | |
---|---|---|---|
FecarottaEtAl_JHYDRO20.pdf
Accesso riservato
Descrizione: paper
:
Publisher’s version
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.