The number of available materials for Laser Powder Bed Fusion is still limited due to the poor processability of many standard alloys. In particular, the lack of high-strength aluminium alloys, widely used in aerospace and automotive industries, remains a big issue for the spread of beam-based additive manufacturing technologies. In this study, a novel high-strength aluminium alloy for high temperature applications having good processability was developed. The design of the alloy was done based on the chemical composition of the widely used EN AW2618. This Al-Cu-Mg-Ni-Fe alloy was modified with Ti and B in order to promote the formation of TiB2 nuclei in the liquid phase able to stimulate heterogeneous nucleation of grains and to decrease the hot cracking susceptibility of the material. The new Al alloy was manufactured by gas atomisation and processed by Laser Powder Bed Fusion. Samples produced with optimised parameters featured relative density of 99.91%, with no solidification cracks within their microstructure. After aging, the material revealed upper yield strength and ultimate tensile strength of 495 MPa and 460 MPa, respectively. In addition, the alloy showed tensile strength higher than wrought EN AW 2618 at elevated temperatures.

Development of a novel high-temperature al alloy for laser powder bed fusion

Belelli F.;Casati R.;Riccio M.;Rizzi A.;Vedani M.
2021-01-01

Abstract

The number of available materials for Laser Powder Bed Fusion is still limited due to the poor processability of many standard alloys. In particular, the lack of high-strength aluminium alloys, widely used in aerospace and automotive industries, remains a big issue for the spread of beam-based additive manufacturing technologies. In this study, a novel high-strength aluminium alloy for high temperature applications having good processability was developed. The design of the alloy was done based on the chemical composition of the widely used EN AW2618. This Al-Cu-Mg-Ni-Fe alloy was modified with Ti and B in order to promote the formation of TiB2 nuclei in the liquid phase able to stimulate heterogeneous nucleation of grains and to decrease the hot cracking susceptibility of the material. The new Al alloy was manufactured by gas atomisation and processed by Laser Powder Bed Fusion. Samples produced with optimised parameters featured relative density of 99.91%, with no solidification cracks within their microstructure. After aging, the material revealed upper yield strength and ultimate tensile strength of 495 MPa and 460 MPa, respectively. In addition, the alloy showed tensile strength higher than wrought EN AW 2618 at elevated temperatures.
2021
Additive manufacturing
Aging
Aluminium alloys
High temperature applications
Laser powder bed fusion
File in questo prodotto:
File Dimensione Formato  
2021 Metals Belelli.pdf

accesso aperto

: Publisher’s version
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1158926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact