Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease, when the pharmacological approach has no more effect. DBS efficacy strongly depends on the accurate localization of the STN and the adequate positioning of the stimulation electrode during DBS stereotactic surgery. During this procedure, the analysis of microelectrode recordings (MER) is fundamental to assess the correct localization. Therefore, in this work, we explore different signal feature types for the characterization of the MER signals associated to STN from NON-STN structures. We extracted a set of spike-dependent (action potential domain) and spike-independent features in the time and frequency domain to evaluate their usefulness in distinguishing the STN from other structures. We discuss the results from a physiological and methodological point of view, showing the superiority of features having a direct electrophysiological interpretation.Clinical Relevance- The identification of a simple, clinically interpretable, and powerful set of features for the STN localization would support the clinical positioning of the DBS electrode, improving the treatment outcome.

Characterization of Microelectrode Recordings for the Subthalamic Nucleus identification in Parkinson’s disease

S. Coelli;V. Levi;J. Del Vecchio Del Vecchio;A. M. Bianchi
2020-01-01

Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease, when the pharmacological approach has no more effect. DBS efficacy strongly depends on the accurate localization of the STN and the adequate positioning of the stimulation electrode during DBS stereotactic surgery. During this procedure, the analysis of microelectrode recordings (MER) is fundamental to assess the correct localization. Therefore, in this work, we explore different signal feature types for the characterization of the MER signals associated to STN from NON-STN structures. We extracted a set of spike-dependent (action potential domain) and spike-independent features in the time and frequency domain to evaluate their usefulness in distinguishing the STN from other structures. We discuss the results from a physiological and methodological point of view, showing the superiority of features having a direct electrophysiological interpretation.Clinical Relevance- The identification of a simple, clinically interpretable, and powerful set of features for the STN localization would support the clinical positioning of the DBS electrode, improving the treatment outcome.
2020
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Deep Brain Stimulation , Humans , Microelectrodes , Parkinson Disease , Subthalamic Nucleus , Treatment Outcome
File in questo prodotto:
File Dimensione Formato  
09175299.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 530.03 kB
Formato Adobe PDF
530.03 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1158574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact