Narrowband Internet of Things (NB-IoT) is a cellular IoT communication technology standardized by 3rd Generation Partnership Project (3GPP) for supporting massive machine type communication and its deployment can be realized by a simple firmware upgrade on existing long term evolution (LTE) networks. The NB-IoT requirements in terms of energy efficiency, achievable rates, latency, extended coverage, make the resource allocation, in a limited bandwidth, even a more challenging problem w.r.t. to legacy LTE. The allocation, done with subcarrier (SC) granularity in NB-IoT, should maintain adequate performance for the devices while keeping the power consumption as low as possible. Nevertheless, the optimal solution of the resource allocation problem is typically unfeasible since nonconvex, NP-hard and combinatorial because of the use of binary variables. In this article, after the formulation of the optimization problem, we study the resource allocation approach for NB-IoT networks aiming to analyze the tradeoff between rate and latency. The proposed suboptimal algorithm allocates radio resource (i.e., SCs) and transmission power to the NB-IoT devices for the uplink transmission and the performance is compared in terms of latency, rate, and power. By comparing the proposed allocation to a conventional round robin (RR) and to a brute-force approach, we can observe the advantages of the formulated allocation problem and the limited loss of the suboptimal solution. The proposed algorithm outperforms the RR by a factor 2 in terms of spectral efficiency and, moreover, the study includes techniques that reduce the dropped packets from 29% to 1.6%.

Rate-Latency Optimization for NB-IoT With Adaptive Resource Unit Configuration in Uplink Transmission

O. Elgarhy;L. Reggiani;
2021-01-01

Abstract

Narrowband Internet of Things (NB-IoT) is a cellular IoT communication technology standardized by 3rd Generation Partnership Project (3GPP) for supporting massive machine type communication and its deployment can be realized by a simple firmware upgrade on existing long term evolution (LTE) networks. The NB-IoT requirements in terms of energy efficiency, achievable rates, latency, extended coverage, make the resource allocation, in a limited bandwidth, even a more challenging problem w.r.t. to legacy LTE. The allocation, done with subcarrier (SC) granularity in NB-IoT, should maintain adequate performance for the devices while keeping the power consumption as low as possible. Nevertheless, the optimal solution of the resource allocation problem is typically unfeasible since nonconvex, NP-hard and combinatorial because of the use of binary variables. In this article, after the formulation of the optimization problem, we study the resource allocation approach for NB-IoT networks aiming to analyze the tradeoff between rate and latency. The proposed suboptimal algorithm allocates radio resource (i.e., SCs) and transmission power to the NB-IoT devices for the uplink transmission and the performance is compared in terms of latency, rate, and power. By comparing the proposed allocation to a conventional round robin (RR) and to a brute-force approach, we can observe the advantages of the formulated allocation problem and the limited loss of the suboptimal solution. The proposed algorithm outperforms the RR by a factor 2 in terms of spectral efficiency and, moreover, the study includes techniques that reduce the dropped packets from 29% to 1.6%.
2021
Resource management , Optimization, Uplink, Throughput, Long Term Evolution, 3GPP
File in questo prodotto:
File Dimensione Formato  
09095397.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri
11311-1158568_Reggiani.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 327.98 kB
Formato Adobe PDF
327.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1158568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 12
social impact