The extent of intersystem crossing in the O(3P) + C6H6 reaction, a prototypical system for spin-forbidden reactions in oxygenated aromatic molecules, is theoretically evaluated for the first time. Calculations are performed using nonadiabatic transition-state theory coupled with stochastic master equation simulations and Landau-Zener theory. It is found that the dominant intersystem crossing pathways connect the T2 and S0 potential energy surfaces through at least two distinct minimum-energy crossing points. The calculated channel-specific rate constants and intersystem crossing branching fractions differ from previous literature estimates and provide valuable kinetic data for the investigation of benzene and polycyclic aromatic hydrocarbons oxidation in interstellar, atmospheric, and combustion conditions. The theoretical results are supported by crossed molecular beam experiments with electron ionization mass-spectrometric detection and time-of-flight analysis at 8.2 kcal/mol collision energy. This system is a suitable benchmark for theoretical and experimental studies of intersystem crossing in aromatic species.
Theoretical Study of the Extent of Intersystem Crossing in the O(3P) + C6H6 Reaction with Experimental Validation
Cavallotti, Carlo;De Falco, Carlo;Pratali Maffei, Luna;
2020-01-01
Abstract
The extent of intersystem crossing in the O(3P) + C6H6 reaction, a prototypical system for spin-forbidden reactions in oxygenated aromatic molecules, is theoretically evaluated for the first time. Calculations are performed using nonadiabatic transition-state theory coupled with stochastic master equation simulations and Landau-Zener theory. It is found that the dominant intersystem crossing pathways connect the T2 and S0 potential energy surfaces through at least two distinct minimum-energy crossing points. The calculated channel-specific rate constants and intersystem crossing branching fractions differ from previous literature estimates and provide valuable kinetic data for the investigation of benzene and polycyclic aromatic hydrocarbons oxidation in interstellar, atmospheric, and combustion conditions. The theoretical results are supported by crossed molecular beam experiments with electron ionization mass-spectrometric detection and time-of-flight analysis at 8.2 kcal/mol collision energy. This system is a suitable benchmark for theoretical and experimental studies of intersystem crossing in aromatic species.File | Dimensione | Formato | |
---|---|---|---|
acs.jpclett.0c02866.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.04 MB
Formato
Adobe PDF
|
3.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.