The potentiostatic electrodeposition of Zn−Ni−Mn was carried out in an alkaline solution with the addition of Mn salt. The effects of electrolyte Mn2+ concentration and deposition potential on the surface morphology, phase structure and corrosion behavior of coatings were studied. The results of corrosion polarization showed that the presence of higher Mn content in Zn−Ni−Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn−Ni coating. The XRD and the XPS analyses from the surface of Zn−Ni−Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride, zinc oxide, zinc hydroxide carbonate, and manganese oxides.

Electrodeposition and corrosion behavior of Zn−Ni−Mn alloy coatings deposited from alkaline solution

MAGAGNIN L.
2020-01-01

Abstract

The potentiostatic electrodeposition of Zn−Ni−Mn was carried out in an alkaline solution with the addition of Mn salt. The effects of electrolyte Mn2+ concentration and deposition potential on the surface morphology, phase structure and corrosion behavior of coatings were studied. The results of corrosion polarization showed that the presence of higher Mn content in Zn−Ni−Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn−Ni coating. The XRD and the XPS analyses from the surface of Zn−Ni−Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride, zinc oxide, zinc hydroxide carbonate, and manganese oxides.
2020
alkaline bath
chemical composition
corrosion resistance
electrodeposition
phase structure
Zn−Ni−Mn
File in questo prodotto:
File Dimensione Formato  
TransNonferrousMetSocChina_2020_548.pdf

Accesso riservato

Descrizione: Articolo
: Publisher’s version
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1157759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
social impact