Thermal engines, particularly closed power cycles, are currently a focus of many studies mainly because they represent the only way to exploit renewable thermal energy. To increase the exploitation of available thermal sources, this work investigates the higher potential offered by a complementary technology based on the use of reactive working fluids instead of inert fluids: the here-called “thermo-chemical” engine. Such a power cycle enables the simultaneous conversion of thermal and chemical energy into work. Based on a theoretical approach, this paper explores engine performance considering different stoichiometries and thermodynamic characteristics of reactive fluids and different operating conditions. It is shown that the use of specific equilibrated reactions occurring in the gaseous phase might lead to extremely powerful and highly efficient energy conversion systems in the whole current domain of the application of power cycles. Moreover, it is demonstrated that, unlike classical thermal machines, a thermo-chemical engine allows efficient and powerful exploitation of low-temperature heat sources and high-temperature cold sinks, which in general, characterize renewable thermal energy.

Thermo-chemical engines: Unexploited high-potential energy converters

Bonalumi, Davide;
2021-01-01

Abstract

Thermal engines, particularly closed power cycles, are currently a focus of many studies mainly because they represent the only way to exploit renewable thermal energy. To increase the exploitation of available thermal sources, this work investigates the higher potential offered by a complementary technology based on the use of reactive working fluids instead of inert fluids: the here-called “thermo-chemical” engine. Such a power cycle enables the simultaneous conversion of thermal and chemical energy into work. Based on a theoretical approach, this paper explores engine performance considering different stoichiometries and thermodynamic characteristics of reactive fluids and different operating conditions. It is shown that the use of specific equilibrated reactions occurring in the gaseous phase might lead to extremely powerful and highly efficient energy conversion systems in the whole current domain of the application of power cycles. Moreover, it is demonstrated that, unlike classical thermal machines, a thermo-chemical engine allows efficient and powerful exploitation of low-temperature heat sources and high-temperature cold sinks, which in general, characterize renewable thermal energy.
2021
File in questo prodotto:
File Dimensione Formato  
Lasala-Bonalumi_ECM_2021.pdf

accesso aperto

: Publisher’s version
Dimensione 9.55 MB
Formato Adobe PDF
9.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1157712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 4
social impact