To what extent do intra- or inter-band transitions dominate the optical response of dielectrics when pumped by a few-cycle near-infrared transient electric field? In order to find an answer to this question we investigate the dynamical Franz–Keldysh effect in polycrystalline diamond and discuss in detail the attosecond delay of the induced electron dynamics with regard to the driving transient electric field while the peak intensity is varied between 1 × 1012 and 10 × 1012 W cm−2. We found that the main oscillating feature in transient absorption at 43 eV is in phase with the electric field of the pump, to within 49 ± 78 as. However, the phase delay shows a slightly asymmetric V-shaped linear energy dispersion with a rate of about 200 as eV–1. Theoretical calculations within the dipole approximation reproduce the data and allow us to conclude that intra-band motion dominates under our experimental conditions.
Attosecond timing of the dynamical Franz–Keldysh effect
Lucchini M.;Gallmann L.;
2020-01-01
Abstract
To what extent do intra- or inter-band transitions dominate the optical response of dielectrics when pumped by a few-cycle near-infrared transient electric field? In order to find an answer to this question we investigate the dynamical Franz–Keldysh effect in polycrystalline diamond and discuss in detail the attosecond delay of the induced electron dynamics with regard to the driving transient electric field while the peak intensity is varied between 1 × 1012 and 10 × 1012 W cm−2. We found that the main oscillating feature in transient absorption at 43 eV is in phase with the electric field of the pump, to within 49 ± 78 as. However, the phase delay shows a slightly asymmetric V-shaped linear energy dispersion with a rate of about 200 as eV–1. Theoretical calculations within the dipole approximation reproduce the data and allow us to conclude that intra-band motion dominates under our experimental conditions.File | Dimensione | Formato | |
---|---|---|---|
11311-1157194_Lucchini.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.