Spatial correlations between two photons are the key resource in realising many quantum imaging schemes. Measurement of the bi-photon correlation map is typically performed using single-point scanning detectors or single-photon cameras based on charged coupled device (CCD) technology. However, both approaches are limited in speed due to the slow scanning and the low frame rate of CCD-based cameras, resulting in data acquisition times on the order of many hours. Here, we employ a high frame rate, single-photon avalanche diode (SPAD) camera, to measure the spatial joint probability distribution of a bi-photon state produced by spontaneous parametric down-conversion, with statistics taken over 107 frames. Through violation of an Einstein–Podolsky–Rosen criterion by 227 sigmas, we confirm the presence of spatial entanglement between our photon pairs. Furthermore, we certify, in just 140 s, an entanglement dimensionality of 48. Our work demonstrates the potential of SPAD cameras in the rapid characterisation of photonic entanglement, leading the way towards real-time quantum imaging and quantum information processing.

Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera

Villa F.;Tisa S.;
2020

Abstract

Spatial correlations between two photons are the key resource in realising many quantum imaging schemes. Measurement of the bi-photon correlation map is typically performed using single-point scanning detectors or single-photon cameras based on charged coupled device (CCD) technology. However, both approaches are limited in speed due to the slow scanning and the low frame rate of CCD-based cameras, resulting in data acquisition times on the order of many hours. Here, we employ a high frame rate, single-photon avalanche diode (SPAD) camera, to measure the spatial joint probability distribution of a bi-photon state produced by spontaneous parametric down-conversion, with statistics taken over 107 frames. Through violation of an Einstein–Podolsky–Rosen criterion by 227 sigmas, we confirm the presence of spatial entanglement between our photon pairs. Furthermore, we certify, in just 140 s, an entanglement dimensionality of 48. Our work demonstrates the potential of SPAD cameras in the rapid characterisation of photonic entanglement, leading the way towards real-time quantum imaging and quantum information processing.
NPJ QUANTUM INFORMATION
sezele, quantum imaging, SPAD array
File in questo prodotto:
File Dimensione Formato  
2020 Ndagano.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1157113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact