Luminescent solar concentrators (LSCs) are a promising solar energy technology for reducing architectural barriers to the integration of photovoltaic systems into the built environment. In this work, the first demonstration of thin-film LSCs based on a thermally reversible cross-linked host polymer is presented. This smart material is obtained via a dynamic-chemistry approach based on the Diels-Alder (DA) reaction between a furan-functionalized acrylic copolymer and an aliphatic bismaleimide to obtain optically clear, cross-linked systems capable of healing mechanical damage upon heat treatment. By carefully tuning the concentration of a perylene-based luminophore dopant, an optical efficiency as high as 4.9% can be achieved with this DA-based LSC. In addition, full recovery of device efficiency is demonstrated after complete thermal healing of mechanically induced surface damages as a result of the embedded DA functionality. The approach presented here paves the way to the development of highly efficient multifunctional thermoresponsive smart LSC systems.

Thermoresponsive Host Polymer Matrix for Self-Healing Luminescent Solar Concentrators

Tatsi E.;Fortunato G.;Rigatelli B.;Turri S.;Griffini G.
2020-01-01

Abstract

Luminescent solar concentrators (LSCs) are a promising solar energy technology for reducing architectural barriers to the integration of photovoltaic systems into the built environment. In this work, the first demonstration of thin-film LSCs based on a thermally reversible cross-linked host polymer is presented. This smart material is obtained via a dynamic-chemistry approach based on the Diels-Alder (DA) reaction between a furan-functionalized acrylic copolymer and an aliphatic bismaleimide to obtain optically clear, cross-linked systems capable of healing mechanical damage upon heat treatment. By carefully tuning the concentration of a perylene-based luminophore dopant, an optical efficiency as high as 4.9% can be achieved with this DA-based LSC. In addition, full recovery of device efficiency is demonstrated after complete thermal healing of mechanically induced surface damages as a result of the embedded DA functionality. The approach presented here paves the way to the development of highly efficient multifunctional thermoresponsive smart LSC systems.
2020
coatings
Diels-Alder
luminescent solar concentrators
photovoltaics
self-healing polymers
stimuli-responsive polymers
File in questo prodotto:
File Dimensione Formato  
ae-2019-02196m_Revised manuscript.pdf

accesso aperto

Descrizione: Manuscript_preprint
: Pre-Print (o Pre-Refereeing)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1157111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 26
social impact