Plasma sheaths characterized by electrons with relativistic energies and far from thermodynamic equilibrium are governed by a rich and largely unexplored physics. A reliable kinetic description of relativistic non-equilibrium plasma sheaths - besides its interest from a fundamental point of view - is crucial to many application, from controlled nuclear fusion to laser-driven particle acceleration. Sheath models proposed in the literature adopt either relativistic equilibrium distribution functions or non-relativistic non-equilibrium distribution functions, making it impossible to properly capture the physics involved when both relativistic and non-equilibrium effects are important. Here we tackle this issue by solving the electrostatic Vlasov-Poisson equations with a new class of fully-relativistic distribution functions that can describe non-equilibrium features via a real scalar parameter. After having discussed the general properties of the distribution functions and the resulting plasma sheath model, we establish an approach to investigate the effect of non-equilibrium solely. Then, we apply our approach to describe laser-plasma ion acceleration in the target normal sheath acceleration scheme. Results show how different degrees of non-equilibrium lead to the formation of sheaths with significantly different features, thereby having a relevant impact on the ion acceleration process. We believe that this approach can offer a deeper understanding of relativistic plasma sheaths, opening new perspectives in view of their applications.

Non-equilibrium effects in a relativistic plasma sheath model

A. Formenti;A. Maffini;M. Passoni
2020-01-01

Abstract

Plasma sheaths characterized by electrons with relativistic energies and far from thermodynamic equilibrium are governed by a rich and largely unexplored physics. A reliable kinetic description of relativistic non-equilibrium plasma sheaths - besides its interest from a fundamental point of view - is crucial to many application, from controlled nuclear fusion to laser-driven particle acceleration. Sheath models proposed in the literature adopt either relativistic equilibrium distribution functions or non-relativistic non-equilibrium distribution functions, making it impossible to properly capture the physics involved when both relativistic and non-equilibrium effects are important. Here we tackle this issue by solving the electrostatic Vlasov-Poisson equations with a new class of fully-relativistic distribution functions that can describe non-equilibrium features via a real scalar parameter. After having discussed the general properties of the distribution functions and the resulting plasma sheath model, we establish an approach to investigate the effect of non-equilibrium solely. Then, we apply our approach to describe laser-plasma ion acceleration in the target normal sheath acceleration scheme. Results show how different degrees of non-equilibrium lead to the formation of sheaths with significantly different features, thereby having a relevant impact on the ion acceleration process. We believe that this approach can offer a deeper understanding of relativistic plasma sheaths, opening new perspectives in view of their applications.
2020
File in questo prodotto:
File Dimensione Formato  
Formenti_2020_New_J._Phys._22_053020.pdf

accesso aperto

Descrizione: articolo principale
: Publisher’s version
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1157094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact