Laser-driven ion sources are interesting for many potential applications, from nuclear medicine to material science. A promising strategy to enhance both ion energy and number is given by Double-Layer Targets (DLTs), i.e. micrometric foils coated by a near-critical density layer. Optimization of DLT parameters for a given laser setup requires a deep and thorough understanding of the physics at play. In this work, we investigate the acceleration process with DLTs by combining analytical modeling of pulse propagation and hot electron generation together with Particle-In-Cell (PIC) simulations in two and three dimensions. Model results and predictions are confirmed by PIC simulations—which also provide numerical values to the free model parameters—and compared to experimental findings from the literature. Finally, we analytically find the optimal values for near-critical layer thickness and density as a function of laser parameters; this result should provide useful insights for the design of experiments involving DLTs.
A theoretical model of laser-driven ion acceleration from near-critical double-layer targets
A. Pazzaglia;L. Fedeli;A. Formenti;A. Maffini;M. Passoni
2020-01-01
Abstract
Laser-driven ion sources are interesting for many potential applications, from nuclear medicine to material science. A promising strategy to enhance both ion energy and number is given by Double-Layer Targets (DLTs), i.e. micrometric foils coated by a near-critical density layer. Optimization of DLT parameters for a given laser setup requires a deep and thorough understanding of the physics at play. In this work, we investigate the acceleration process with DLTs by combining analytical modeling of pulse propagation and hot electron generation together with Particle-In-Cell (PIC) simulations in two and three dimensions. Model results and predictions are confirmed by PIC simulations—which also provide numerical values to the free model parameters—and compared to experimental findings from the literature. Finally, we analytically find the optimal values for near-critical layer thickness and density as a function of laser parameters; this result should provide useful insights for the design of experiments involving DLTs.File | Dimensione | Formato | |
---|---|---|---|
Pazzaglia_2020_CommPhys.pdf
accesso aperto
Descrizione: articolo principale
:
Publisher’s version
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.