A major problem in the emulation of discrete-time nonlinear systems, such as those encountered in Virtual Analog modeling, is aliasing distortion. A trivial approach to reduce aliasing is oversampling. However, this solution may be too computationally demanding for real-time applications. More advanced techniques to suppress aliased components are arbitrary-order Antiderivative Antialiasing (ADAA) methods that approximate the reference nonlinear function using a combination of its antiderivatives of different orders. While in its original formulation it is applied only to memoryless systems, recently, the applicability of first-order ADAA has been extended to stateful systems employing their state-space description. This paper presents an alternative formulation that successfully applies arbitrary-order ADAA methods to Wave Digital Filter models of dynamic circuits with one nonlinear element. It is shown that the proposed approach allows us to design ADAA models of the nonlinear elements in a fully local and modular fashion, independently of the considered reference circuit. Further peculiar features of the proposed approach, along with two examples of applications, are discussed.
ANTIDERIVATIVE ANTIALIASING IN NONLINEAR WAVE DIGITAL FILTERS
Davide Albertini;Alberto Bernardini;Augusto Sarti
2020-01-01
Abstract
A major problem in the emulation of discrete-time nonlinear systems, such as those encountered in Virtual Analog modeling, is aliasing distortion. A trivial approach to reduce aliasing is oversampling. However, this solution may be too computationally demanding for real-time applications. More advanced techniques to suppress aliased components are arbitrary-order Antiderivative Antialiasing (ADAA) methods that approximate the reference nonlinear function using a combination of its antiderivatives of different orders. While in its original formulation it is applied only to memoryless systems, recently, the applicability of first-order ADAA has been extended to stateful systems employing their state-space description. This paper presents an alternative formulation that successfully applies arbitrary-order ADAA methods to Wave Digital Filter models of dynamic circuits with one nonlinear element. It is shown that the proposed approach allows us to design ADAA models of the nonlinear elements in a fully local and modular fashion, independently of the considered reference circuit. Further peculiar features of the proposed approach, along with two examples of applications, are discussed.File | Dimensione | Formato | |
---|---|---|---|
DAFx2020_paper_35.pdf
accesso aperto
:
Publisher’s version
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.