Social robots are now being considered to be a part of the therapy of children with autism. During the interactions, some aggressive behaviors could lead to harmful scenarios. The ability of a social robot to detect such behaviors and react to intervene or to notify the therapist would improve the outcomes of therapy and prevent any potential harm toward another person or to the robot. In this study, we investigate the feasibility of an artificial neural network in classifying 6 interaction behaviors between a child and a small robotic toy. The behaviors were: hit, shake, throw, pickup, drop, and no interaction or idle. Due to the ease of acquiring data from adult participants, a model was developed based on adults' data and was evaluated with children's data. The developed model was able to achieve promising results based on the accuracy (i.e. 80%), classification report (i.e. overall F1-score=80%), and confusion matrix. The findings highlight the possibility of characterizing children's negative interactions with robotic toys to improve safety.

Recognition of Aggressive Interactions of Children Toward Robotic Toys

Alhaddad A. Y.;Bonarini A.
2019-01-01

Abstract

Social robots are now being considered to be a part of the therapy of children with autism. During the interactions, some aggressive behaviors could lead to harmful scenarios. The ability of a social robot to detect such behaviors and react to intervene or to notify the therapist would improve the outcomes of therapy and prevent any potential harm toward another person or to the robot. In this study, we investigate the feasibility of an artificial neural network in classifying 6 interaction behaviors between a child and a small robotic toy. The behaviors were: hit, shake, throw, pickup, drop, and no interaction or idle. Due to the ease of acquiring data from adult participants, a model was developed based on adults' data and was evaluated with children's data. The developed model was able to achieve promising results based on the accuracy (i.e. 80%), classification report (i.e. overall F1-score=80%), and confusion matrix. The findings highlight the possibility of characterizing children's negative interactions with robotic toys to improve safety.
2019
2019 28th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2019
978-1-7281-2622-7
Robot therapy
Behavior recognition
Social robot
Autism
File in questo prodotto:
File Dimensione Formato  
ROMAN_2019.pdf

accesso aperto

Descrizione: Main paper
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1156735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 2
social impact