A transient large-amplitude car-body vibration could seriously affect train operational safety and riding comfort when a high-speed train passes through a complex terrain under strong wind conditions. In this study, according to the car-body vibration characteristics under strong wind conditions and the definition of the train overturning coefficient, a railway half-vehicle vibration-overturning analytical model is developed and a formula for the evaluation of the overturning coefficient known the car-body vibration parameters (mainly car-body roll angle lateral displacement) is obtained. Moreover, the formula validity is verified by multi-body nonlinear numerical code simulations and full-scale tests. The results show that the train operational safety under strong wind conditions can be evaluated with a good approximability using the roll angle and the lateral displacement of the center of gravity of the car-body, and the train overturning coefficient calculated using the formula proposed in this paper is well correlated with the overturning coefficient directly measured by instrumented wheelset, and the value amplitude was nearly the same.

Correlation of car-body vibration and train overturning under strong wind conditions

Liu D.;Tomasini G.;Rocchi D.;Cheli F.;
2020-01-01

Abstract

A transient large-amplitude car-body vibration could seriously affect train operational safety and riding comfort when a high-speed train passes through a complex terrain under strong wind conditions. In this study, according to the car-body vibration characteristics under strong wind conditions and the definition of the train overturning coefficient, a railway half-vehicle vibration-overturning analytical model is developed and a formula for the evaluation of the overturning coefficient known the car-body vibration parameters (mainly car-body roll angle lateral displacement) is obtained. Moreover, the formula validity is verified by multi-body nonlinear numerical code simulations and full-scale tests. The results show that the train operational safety under strong wind conditions can be evaluated with a good approximability using the roll angle and the lateral displacement of the center of gravity of the car-body, and the train overturning coefficient calculated using the formula proposed in this paper is well correlated with the overturning coefficient directly measured by instrumented wheelset, and the value amplitude was nearly the same.
2020
Car-body vibration
Crosswind
Full-scale test
High-speed train
Overturning coefficient
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0888327020301291-main.pdf

Accesso riservato

Descrizione: articolo
: Publisher’s version
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1156687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 25
social impact