Numerous Surface Soil Moisture (SSM) products are available from remote sensing, encompassing different spatial, temporal, and radiometric resolutions and retrieval techniques. Notwithstanding this variety, all products should be coherent with water inputs. In this work, we have cross-compared precipitation and irrigation with different SSM products: Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate Change Initiative (ESA-CCI) products, Copernicus SSM1km, and Advanced Microwave Scanning Radiometer 2 (AMSR2). The products have been analyzed over two agricultural sites in Italy (Chiese and Capitanata Irrigation Consortia). A Hydrological Consistency Index (HCI) is proposed as a means to measure the coherency between SSM and precipitation/irrigation. Any time SSM is available, a positive or negative consistency is recorded, according to the rainfall registered since the previous measurement and the increase/decrease of SSM. During the irrigation season, some agreements are labeled as “irrigation-driven”. No SSM dataset stands out for a systematic hydrological coherence with the rainfall. Negative consistencies cluster just below 50% in the non-irrigation period and lose 20–30% in the irrigation period. Hybrid datasets perform better (+15–20%) than single-technology measurements, among which active data provide slightly better results (+5–10%) than passive data.
Irrigation and precipitation hydrological consistency with smos, smap, esa-cci, copernicus ssm1km, and amsr-2 remotely sensed soil moisture products
Paciolla N.;Corbari C.;Mancini M.
2020-01-01
Abstract
Numerous Surface Soil Moisture (SSM) products are available from remote sensing, encompassing different spatial, temporal, and radiometric resolutions and retrieval techniques. Notwithstanding this variety, all products should be coherent with water inputs. In this work, we have cross-compared precipitation and irrigation with different SSM products: Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate Change Initiative (ESA-CCI) products, Copernicus SSM1km, and Advanced Microwave Scanning Radiometer 2 (AMSR2). The products have been analyzed over two agricultural sites in Italy (Chiese and Capitanata Irrigation Consortia). A Hydrological Consistency Index (HCI) is proposed as a means to measure the coherency between SSM and precipitation/irrigation. Any time SSM is available, a positive or negative consistency is recorded, according to the rainfall registered since the previous measurement and the increase/decrease of SSM. During the irrigation season, some agreements are labeled as “irrigation-driven”. No SSM dataset stands out for a systematic hydrological coherence with the rainfall. Negative consistencies cluster just below 50% in the non-irrigation period and lose 20–30% in the irrigation period. Hybrid datasets perform better (+15–20%) than single-technology measurements, among which active data provide slightly better results (+5–10%) than passive data.File | Dimensione | Formato | |
---|---|---|---|
11311-1156303_Paciolla.pdf
accesso aperto
:
Publisher’s version
Dimensione
7.08 MB
Formato
Adobe PDF
|
7.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.